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Transport properties of a rectangular array of
highly conducting cylinders
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Abstract. The method of functional equations is applied to evaluate the effective conductivity tensor for a rec-
tangular array of highly conducting cylinders. The Rayleigh sinis calculated by Eisenstein and Weierstrass
functions. Approximate analytical formula for the effective conductivity tensor are deduced.
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1. Introduction

Composite materials play an important role in many branches of engineering. Typically, in
such materials, the physical parameters (such as electrical and heat conduction, elasticity
coefficient, ..) are discontinuous and vary between the different values characterizing each
of the components. When these components are intimately mixed, these parameters vary very
rapidly and the microscopic structure becomes complicated. On the other hand, we may expect
to get a good approximation of the macroscopic behavior of such a heterogeneous material by
a special kind of averaging of the properties of components. For engineers it is interesting
to know formulae relating the macroscopic (effective) and microscopic properties, because
it allows media to be created with unusual properties and the optimal design problem to be
discussed. The results are of interest in thin films to calculate their optical properties, where
films consisting of columns of one material in a matrix of another material are observed.
In the field of materials physics two phase materials containing fibre inclusions often occur.
Knowledge of their electrical or thermal conductivities is valuable in applied physics.

In the present paper we study the electrical properties of a rectangular array of cylinders.
The same formalism and results are immediately applicable to many other problems governed
by Laplace’s equatiore.g.thermal conductivity, dielectric constant, permeability, modulus of
torsion.

The problem of calculating the effective transport properties of a rectangular array of cylin-
ders has received much attention. A number of workers have been inspired by a seminal paper
of Lord Rayleigh [1]. McPhedraet al.[2—6] obtain an infinite set of linear algebraic equations
for the multiple coefficients, which can be truncated to give various low-order formulae to
calculate the effective conductivity tensor
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Figure 1. The rectangular array of cylinders and the unit cell.

of a square or hexagonal array of cylinders. Sangani and Yao [7] proposed an efficient method
to calculateA, for a square cell containing many cylinders whose size and location of the
centers are arbitrary. The latter method is based on the same infinite system as in the method
of Rayleigh. Bergman [8] derived an analytic representation afelated to the bounds on the
coefficients ofA,. The latest results in this direction are represented by Bergman and Dunn
[9] and Clark and Milton [10]. Using the method of collocation, Kolodziej [11-12] calculated
numericallyA, of regular arrays of cylinders. Mityushev [13—-19] applied the functional equa-
tion method to derive exact and approximate analytic formulae for arbitrary doubly periodic
cell with arbitrary circular inclusions.

The case of highly conducting cylinders requires special attention. McPhetedn[5]
calculated the square-array transport coefficient for arbitrary high cylinder conductivity and
arbitrary small cylinder separations. Asymptotic formulae have been deduced, and their accu-
racy has been discussed.

In the present paper an asymptotic analysis of Mityushev’s functional equation is applied
to study the effective conductivity tensar, for a rectangular array of cylinders. The method
of functional equations is extended to the case of highly conducting cylinders. This method
allows us to consider rectangular arrays. It generalizes the results [2—7] devoted only to square
and triangular arrays of cylinders. The final formulae for are written in terms of the
modified Eisenstein functions which are closely related to the elliptic functions. It is shown
that such a representation leads to analytic asymptotic formulae with given arbitrary accuracy
with respect to volume fraction. The formulae (26), (27) and (28) obtained in Section 5 are of
practical interest, because many thin films with interesting electrical, mechanical and optical
properties exhibit a columnar structure.

2. Functional equation

Consider a lattica defined by two fundamental translation vectars- 0 and ix~* in the
complex planeC. The zero celly, the basis oD, is the rectangléz = x +iy = ha+tia™?,
—1/2 <t; <1/2,j = 1,2}. The area of celQo, |Qo| = 1. Let{e;}72, be an ordered set of
the complex numbers o + m»ie~t arranged in accordance with the Eisenstein summation
method (see Section 3). Hetg andm, are integersey := 0. The lattice@ consists of the
cellsQ; =Qo+ej:={zeC,z—e¢; € Qo}.

Consider the dislD; := {z € C, |z| < r} in the zero cellQo. Let D := Q¢ — D;. We study
the conductivity of the doubly periodic composite material, when the domainrse; and
D1 + ¢; are occupied by materials of unit ang > 0 conductivity, respectively (Figure 1).
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The potentials:(z) andu;(z) are harmonic inD +¢; andD1 +¢; (j =0,1,2,...) with the
boundary conditions

ad ad
u=ui, _l/t = )\-lﬂ on L, (1)
on on
whered/adn is the normal derivativel. := {z € C, |z| = r}. The external field is applied in
the x-direction

uz+a)=u@ 4o,  u@+ie™H) =u@. )
If the conductivity of the inclusion®; + ¢; tends to infinity, then condition (1) becomes
u=uwu; onlL, 3)

whereu is a constant. Itis problem defined by (3), (2) that is discussed in the present paper. It
is convenient for us to start by considering problem (1), (2) with fikiteThen it is assumed
thati; — oo.

Following Mityushev [15, 19] we reduce problem (1), (2) to a functional equation. We use
the normal and tangent derivatives on the cutve

0 —cos@a+sin98- 9 _ sin@8 +cos€a
n dx dy’ ds 0x ay’
wheren = (cos#, sin 0) is the normal vector td.. Applying the operatof/ds to the first
relation (1), we obtain
au

. ou . duq
—sin— + cosé = —Sinf—- + coso
ox dy ox

8141
e (4)
y

The second relation (1) can be written in the form

0 .0 0 .0
cos@—u+sm9—u:k1 cos@ﬂvtkl sm@ﬂ. (5)
ox ay ax ay

Let us introduce the complex potentials

(o) = 2L <% - i%) and () =

u ou
2 ax ay ax

B e
dy

which are analytic inD, and D, respectively, and continuous in the closures of the domains
considered. Substituting

Bul_ 1 - %_ i 7
T (VA N et v (LAl 28
NP TR P
oy — 2@+ 9 8y—2(¢> b)

in (4), (5) we obtain the followin@R-linear problem [15]

¢(t) =Y (@) + pn?y(t), tel
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with respect to the functiong(z) andy (z) which are analytic irD; and D, respectively. Here

p = (A1 — 1)(A1 + 1)~ is a Bergman's parameter [8-9], the normal vectds represented
as a complex number := cosé + i sin 6. We denote the position inside domains by the
complex variablez = x + iy; the position alongL — by the complex variable = r €.
Calculatlngn2 = (cos6 — i sin #)? = (r/t)? we arrive at the relation

2
b0 =y +p (=) FO. reL. (6)

Equalities (2) imply that the functiog (z) is doubly periodic inC.
Following [15-16, 19] we introduce the function

D e—epti=>z—e) P =1+ S2=PR) — 272+ S, (7)

j=1

and the series

Z(z—e,) vf( —e,)

[ee] 72 _ - e’}
=) (z—ep? [w (Z"_:e) - x/x(@} +Y 0 ) (—e)?
j=1 j

j=1
where
00 2
X;ejz =85 :=— 2 ( 22; sinh2(wmo~ )) (8)
J= m

P (z) is the Weierstrass function [21]. Formula (8) is discussed in the next section.
Introduce the function

——
¥(z) — pr22<z—e,) w( ) 2l <,
j=1 ¢

———
d(2) — prZZ(z—ej) w( —e)’ z € D.
J

j=0

®(z) =

Using (6) and applying the principles of analytic function theory, Mityushev [15] has proved
that®(z) = 1. This relation yields the following functional equation

r2
W(z)—pFZZ(z—e) W( e,>+1, 2l <, (9)

j=1 J

with respect to the functioit (z) analytic in|z| < » and continuous itfiz| < r
We now proceed to calculate the component

A / dxdy+)\1// —dxdy
0x D1



Transport properties of a rectangular array of highly conducting cylinderss

of the effective conductivity tensak,. Using Green’s formula we have

/ 8—ud)cdy:/ udy—/udy. (20)
p 0x 900 L

Using (2) we have

[uo= [ (-5 em)-a(5n)] @

The integral/, « dy is calculated by the mean value theorem of harmonic functions in a disk.
We have

/udy =/u1dy = v%(O),
L L ox

wherev = 772 is the area fraction of the inclusions. Hengzg takes the form
0
W =1+ (b — Du==(0).
ox

Similar arguments applied to

5 9
xy:/ —dedy+k1// 2 e dy
Day D, 8)1

yield the relation
, duy
A2 = (A — DHv—10). (11)
dy
Two real relations (10) and (11) imply one complex equality
Ay —inyy =14 2pvy(0).
We note that symmetry of the problem implies’ = 0. Hence;/ (0) is real and
A, =1+ 20vy(0). (12)

If the conductivity of cylinders.; is much greater than the conductivity of the host 1, then
one can assume that = +oo, and hence = 1. The functional equation (9) then becomes

o0 2

Y@ =r’) (z—e) %y ( d ) +1 lzZl<r (13)
j=1 Z—ej

Convergence of the method of successive approximations for Equation (13) in thg|cask

has not been previously investigated. In the present paper this convergence question is also not

addressed. We propose only a simple algorithm to get approximate analytic formulag Yor

anda} with arbitrary given accuracy.
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3. Elliptic functions according to Eisenstein
In order to calculate the effective transport conductivity tensor Rayleigh [1] introduced a
conditionally convergent sum

o]

S2=> e;° (14)

j=1
defined in the following way

N

M

NENT ; ; —1,-2

Sy = Nlinoo E X A}IE’IOO E M(mla + imya™") (15)
mp=— mo=—

and calculated by (8). The method of summation in (14) is determined by (15). Th&;sum
in (15) was introduced by Eisenstein. A modern survey of the Eisenstein approach is due to
Weil [20]. In the present section Eisenstein functions and their relation to the Rayleigh sums
are discussed.

Eisenstein introduced the following functions

Ey(z):=) (z+e)™" (16)
j
If n > 3, then the series (16) is absolutely convergent. # 1 orn = 2 Eisenstein defined
these series as (15) by the following summation method
N M
BN [PILEDD
e mi=—N moy=—M

The functionE,(z) can be represented by the absolutely convergent series

Ex(z) = (g)z |:Sin2(nzal) + zmio sin2(ra~Y(z + imozl))i| . (17)
The Eisenstein functio’>(z) is related to the Weierstrass functig(z) by the formula
E(z) — S2 = P (2),
wheresS, has the form (15). This formula implies the equality
S2 = (E2(2) = P(2))e=0 = (E2(2) = 2 %).=0,
since(P (z) — z72).—o = 0. Using (17) we arrive at formula (8).

The Eisenstein functiof;(z) = }_,(z + ¢;) ! is related to the Weierstrass functiotx)
by the formula

¢(z) = E1(z) + S2z.
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Figure 2. The Rayleigh sun$>(X) calculated with (18).

Using the relations

{(z+a)—¢(2) = 2(a/2), E1(z +a) — E1(z) =0,
we obtain the fundamental equality

So = a 120 (a/2).
It follows from elliptic function theory [21] that

7.[2 1 S thm
w5 (oL ) oo

m=1

whereh = exp(—ma~2). So we have proved that the formulae (8), (15) and (18) must give the
same result. The formula (18) is very effective in calculation, becauseexp(—mr) ~ 0.043
for 0 < @ < 1. Mityushev [18] proved the identity

Sa(a®) + Sa(a™?) = 27, (19)

S, is considered as a function of. The formula (19) allows us to calculase, « > 1. The
function S>(X) is represented in Figure 2.
Introduce the modified Eisenstein functions

0,2) =E,(0)—z", n=12,... (20)

with their Taylor expansions

ou(2) = (=" Y _ (l I l) Sint'. (21)

n—1
1=0

HereS; is defined by (15) and calculated by (8) or (18). The sums

o
S, :=Ze;”, n=3,4,...
1=0
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are absolutely convergent. It is known [21] tt#gt= O for oddnr and S, are real for evem.
The sumss,, take real values in general only for rectangular arrays of cylinders.

4. Method of Rayleigh

The method of Rayleigh [1] has been discussed in [2-20] and others. Starting from Equation
(13) we can obtain an infinite system of linear algebraic equations following this approach.
We look for a functiony (z) from (13) in the form of the Taylor expansion

V(z) = Zamzm.
m=0
Substituting this expansion in (13) we obtain

oo oo
Yo" =) @ o, @) + 1 <, (22)

m=0 m=0

whereo, (z) are the modified Eisenstein functions (20). Substituting (21) in (22) we obtain the
infinite R-linear algebraic system

o
wfl+m+1 )
al = Z(_l) 1( m + 1 )Sl+n1+2r2( 1+l)am + 810’ l = 0’ l’ 2’ cee (23)

m=0

with respect tow;. Here o is the Kronecker symbol. Calculating the real part of (23), we
arrive at the Rayleigh system.

We do not use the system (23) to calculdte) and the effective conductivity tensor. We
note only that the coefficientg (/ =0, 1, 2, .. .) satisfying (23) are analytic functions @A.
Therefore, the functiony (z) = ¥ (z, r?) is analytic inr2.

5. Solution to Equation (13)

It follows from the previous section that we can look fio(z) in the form

V@R =Y =) Yu@r? (24)

m=0

Substitute (24) in (13) and select the terms with (m = 0, 1, 2, ...). In the results we have
the following scheme of successive approximations to calculgte)

Yo) =1  Yu(@= ) Viouad), m=12..., (25)

I+s=m—1

wherey;(z) = Y2 o ¥i,z°. The finite sumd_,, . contains the terms ih=m — 1,5 = 0;
l=m—-3,s=2;...;1=0,s =m — 1. It follows from (21) thats,,(0) = (—1)" S, = O for
oddn, ando,(0) = S, for evenn. Therefore;, = 0 for odds.
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We calculate

Y1(2) = Yo002(2) = 02(2) = Y (L + D127,

=0

Y2(2) = Y1002(2) = 02(0)02(2) = S202(2),
V3(2) = ¥2002(2) + Y0204(2) = S502(2),
Va(z) = V3002(2) + V1204(2) = S302(2) + 35404(2),
Vs(z) = Ya002(2) + V2204(z) = (S5 + 352)02(2) + 3525404(2),
V6(z) = V5002(2) + V3204(2) + V1406(2)

= (S5 + 685253)02(2) + 3558404(2) + 5S606(2),
¥7(2) = Y6002(2) + Ya204(2) + Y2406(2)

= (854 95252 4 552)02(2) + 354(S3 + 108)04(2) + 5525606(2),
V8(2) = ¥7002(2) + ¥5204(2) + V3406(2) + Y1608(2)

= (8] + 128552 + 105,52 + 305286)02(2)

+384(S3 + 385 + 105,56)04(2) + 585 S606(2) + 7S50 (2).

Using (25) we can calculate the next functiafs (z).

These equalities and (12) imply

1+v2-Sy/7) 6S§n*4v5
1—vSy/m A —vSy/m)?

A = 1420 Z Y (0)r 0" =

m=0
+105,86(2 + 3vSy/m)w v’ + 608ZS6(1 + 2vS, /)T v’
+2(953 + 7557 % + 0%, aswv — 0. (26)
Let us consider the components and 1, of the effective conductivity tensoA, as
functions onw?. Then
A (a?) = A (a?).

This formula allows us to calculatg = 1} («?), using (26). If we change? into «~2, then
So(a™?) = 2m — S»(«?) in accordance with (19). The lattice suig (n > 2) do not change.
Therefore,

W o— 1+vSy/m n 6S§n*4v5
¢ 1-v2-S/m) A—v2-—Sy/m))?

+108586(2 4 3v(2 — So /)~ "v’
+6057S6(L 4 2v(2 — So/m )~ "v’
+2(953 + 7557 %% + 0%, aswv — 0. (27)
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Figure 3. The effective conductivity coefficient of a square array of cylinders: curve 1 calculated with (30); curve
2 calculated with (28) and curve 3 calculated with (29).

The tensorA, has the form

a0
A, = ),
(o5

where)* andA; are calculated with (26) and (27).
For a square array of cylinders the effective conductivity is a scalar valse A} = A7,
andS; =, S4 ~ 3-:1512112.S = 0, Sg ~ 4-2557732. Then (26) and (27) yield

14w v°

he= Ty HOS s H 2085 TSR+ 00, asv 0. (28)

The first term in (28) corresponds to the well-known Clausius—Mossotti approximation

A 1+v
¢ 11—y

(29)

We compare formulae (28), (29) with the formula

0-305827#
Ao A 142 1— pv— —0-0133624v8 30
+ p”/( Py 2 —1.4029588 5”) (30)

for p = 1 from [6] in Figure 3. It is hard to say which formula is better. We know only the
lower boundi, > (1+ v)/(1— v) for perfectly conducting cylinders. Both formulae (28) and
(30) satisfy this inequality and contain the terms ugt@®). Anyway, one can calculate the
next termsy,, (z) (m > 9) by (25) and improve (28).
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6. Concluding remarks

The Rayleigh suns; is calculated by Eisenstein and Weierstrass functions for the rectangular
array of cylinders. So it is justified that all different previous definitions of the Rayleigh sum
of second order give the same result.

The method of functional equations is extended to the case of highly conducting cylin-
ders. This allows us to deduce a simple iterative scheme (25) and an approximate analytical
formulae (26) and (27) for the components of the effective conductivity tensor. We note that
formulae (26) and (27) are valid for arbitrary rectangular arrays, formula (30) from [6] has
been deduced only for a square array.

It is easily seen that the maximum area fraction of the inclusigagdepends ow by the
rule

Umax = % min(e?, a~?). (31)

This corresponds to touching cylinders. Formula (28) can also be appliegta,ay, but for

a separated from 1. In the case wheis close tovmax @anda = 1 we cannot use an expansion
of A} in a neighborhood of the point = 0 [4, 5]. Hence, formula (28) cannot be applied in
this case.

w

w

effective conductmity

14 15 18 2
area fraction side of the rectangle o

Figure 4.The coefficient.} = A3 (az, v), wherea = Figure 5.The coefficient} = A (oez, vmax), Where
01,02, ..., 3, the area fractiom changes along- vmax IS calculated with (31).

axes.

Figure 4 presents; as a function orv with different fixeda. Here the restrictions (31)
are given in account. The curves in Figure 4 end in the points (31) and show the maximum
possible value.! for fixed . Of course the maximurk} tends to infinity ifo tends to 1. See
McPhedraret al.[4-5]. Figure 5 presents the maximum possibjeas a functionr with vmax
calculated by (31).

Formulae (26) and (27) are easy to calculate and can be simply used in applied physics to
evaluate macroscopic properties of thin films and materials containing fibre inclusions. See
McPhedraret al.[2—6].
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