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Abstract. The method of functional equations is applied to evaluate the effective conductivity tensor for a rec-
tangular array of highly conducting cylinders. The Rayleigh sumS2 is calculated by Eisenstein and Weierstrass
functions. Approximate analytical formula for the effective conductivity tensor are deduced.
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1. Introduction

Composite materials play an important role in many branches of engineering. Typically, in
such materials, the physical parameters (such as electrical and heat conduction, elasticity
coefficient,. . .) are discontinuous and vary between the different values characterizing each
of the components. When these components are intimately mixed, these parameters vary very
rapidly and the microscopic structure becomes complicated. On the other hand, we may expect
to get a good approximation of the macroscopic behavior of such a heterogeneous material by
a special kind of averaging of the properties of components. For engineers it is interesting
to know formulae relating the macroscopic (effective) and microscopic properties, because
it allows media to be created with unusual properties and the optimal design problem to be
discussed. The results are of interest in thin films to calculate their optical properties, where
films consisting of columns of one material in a matrix of another material are observed.
In the field of materials physics two phase materials containing fibre inclusions often occur.
Knowledge of their electrical or thermal conductivities is valuable in applied physics.

In the present paper we study the electrical properties of a rectangular array of cylinders.
The same formalism and results are immediately applicable to many other problems governed
by Laplace’s equation;e.g.thermal conductivity, dielectric constant, permeability, modulus of
torsion.

The problem of calculating the effective transport properties of a rectangular array of cylin-
ders has received much attention. A number of workers have been inspired by a seminal paper
of Lord Rayleigh [1]. McPhedranet al.[2–6] obtain an infinite set of linear algebraic equations
for the multiple coefficients, which can be truncated to give various low-order formulae to
calculate the effective conductivity tensor
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Figure 1. The rectangular array of cylinders and the unit cell.

of a square or hexagonal array of cylinders. Sangani and Yao [7] proposed an efficient method
to calculate3e for a square cell containing many cylinders whose size and location of the
centers are arbitrary. The latter method is based on the same infinite system as in the method
of Rayleigh. Bergman [8] derived an analytic representation of3e related to the bounds on the
coefficients of3e. The latest results in this direction are represented by Bergman and Dunn
[9] and Clark and Milton [10]. Using the method of collocation, Kolodziej [11–12] calculated
numerically3e of regular arrays of cylinders. Mityushev [13–19] applied the functional equa-
tion method to derive exact and approximate analytic formulae for arbitrary doubly periodic
cell with arbitrary circular inclusions.

The case of highly conducting cylinders requires special attention. McPhedranet al. [5]
calculated the square-array transport coefficient for arbitrary high cylinder conductivity and
arbitrary small cylinder separations. Asymptotic formulae have been deduced, and their accu-
racy has been discussed.

In the present paper an asymptotic analysis of Mityushev’s functional equation is applied
to study the effective conductivity tensor3e for a rectangular array of cylinders. The method
of functional equations is extended to the case of highly conducting cylinders. This method
allows us to consider rectangular arrays. It generalizes the results [2–7] devoted only to square
and triangular arrays of cylinders. The final formulae for3e are written in terms of the
modified Eisenstein functions which are closely related to the elliptic functions. It is shown
that such a representation leads to analytic asymptotic formulae with given arbitrary accuracy
with respect to volume fraction. The formulae (26), (27) and (28) obtained in Section 5 are of
practical interest, because many thin films with interesting electrical, mechanical and optical
properties exhibit a columnar structure.

2. Functional equation

Consider a latticeQ defined by two fundamental translation vectorsα > 0 and iα−1 in the
complex planeC. The zero cellQ0, the basis ofQ, is the rectangle{z = x+iy = t1α+t2 iα−1,
−1/2 < tj < 1/2, j = 1,2}. The area of cellQ0, |Q0| = 1. Let {ej }∞j=0 be an ordered set of
the complex numbersm1α +m2 iα−1 arranged in accordance with the Eisenstein summation
method (see Section 3). Herem1 andm2 are integers,e0 := 0. The latticeQ consists of the
cellsQj = Q0+ ej := {z ∈ C, z− ej ∈ Q0}.

Consider the diskD1 := {z ∈ C, |z| < r} in the zero cellQ0. LetD := Q0−D1. We study
the conductivity of the doubly periodic composite material, when the domainsD + ej and
D1 + ej are occupied by materials of unit andλ1 > 0 conductivity, respectively (Figure 1).
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The potentialsu(z) andu1(z) are harmonic inD + ej andD1+ ej (j = 0,1,2, . . .) with the
boundary conditions

u = u1,
∂u

∂n
= λ1

∂u1

∂n
on L, (1)

where∂/∂n is the normal derivative,L := {z ∈ C, |z| = r}. The external field is applied in
thex-direction

u(z + α) = u(z)+ α, u(z+ iα−1) = u(z). (2)

If the conductivity of the inclusionsD1+ ej tends to infinity, then condition (1) becomes

u = u1 on L, (3)

whereu1 is a constant. It is problem defined by (3), (2) that is discussed in the present paper. It
is convenient for us to start by considering problem (1), (2) with finiteλ1. Then it is assumed
thatλ1→∞.

Following Mityushev [15, 19] we reduce problem (1), (2) to a functional equation. We use
the normal and tangent derivatives on the curveL

∂

∂n
= cosθ

∂

∂x
+ sin θ

∂

∂y
; ∂

∂s
= − sin θ

∂

∂x
+ cosθ

∂

∂y
,

wheren = (cosθ, sin θ) is the normal vector toL. Applying the operator∂/∂s to the first
relation (1), we obtain

− sin θ
∂u

∂x
+ cosθ

∂u

∂y
= − sin θ

∂u1

∂x
+ cosθ

∂u1

∂y
. (4)

The second relation (1) can be written in the form

cosθ
∂u

∂x
+ sin θ

∂u

∂y
= λ1 cosθ

∂u1

∂x
+ λ1 sin θ

∂u1

∂y
. (5)

Let us introduce the complex potentials

ψ(z) := λ1+ 1

2

(
∂u1

∂x
− i
∂u1

∂y

)
and φ(z) := ∂u

∂x
− i
∂u

∂y

which are analytic inD1 andD, respectively, and continuous in the closures of the domains
considered. Substituting

∂u1

∂x
= 1

λ1+ 1
(ψ + ψ̄), ∂u1

∂y
= i

λ1+ 1
(ψ − ψ̄),

∂u

∂x
= 1

2(φ + φ̄),
∂u

∂y
= i

2
(φ − φ̄)

in (4), (5) we obtain the followingR-linear problem [15]

φ(t) = ψ(t)+ ρn2ψ(t), t ∈ L
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with respect to the functionsφ(z) andψ(z)which are analytic inD1 andD, respectively. Here
ρ := (λ1 − 1)(λ1 + 1)−1 is a Bergman’s parameter [8–9], the normal vectorn is represented
as a complex numbern := cosθ + i sin θ . We denote the position inside domains by the
complex variablez = x + iy; the position alongL – by the complex variablet = r eiθ .
Calculatingn2 = (cosθ − i sin θ)2 = (r/t)2 we arrive at the relation

φ(t) = ψ(t)+ ρ
(r
t

)2
ψ(t), t ∈ L. (6)

Equalities (2) imply that the functionφ(z) is doubly periodic inC.
Following [15–16, 19] we introduce the function

∞∑
j=1

(z− ej )−2 :=
∞∑
j=1

[(z− ej )−2− e−2
j ] + S2 = P (z)− z−2+ S2, (7)

and the series
∞∑
j=1

(z− ej )−2ψ

(
r2

z − ej
)

:=
∞∑
j=1

(z− ej )−2

[
ψ

(
r2

z− ej
)
− ψ(0)

]
+ ψ(0)

∞∑
j=1

(z − ej )−2,

where

∞∑
j=1

e−2
j = S2 := π2

α2

(
1
3 − 2

∞∑
m=1

sinh−2(πmα−2)

)
, (8)

P (z) is the Weierstrass function [21]. Formula (8) is discussed in the next section.
Introduce the function

8(z) :=


ψ(z)− ρr2

∞∑
j=1

(z− ej )−2ψ

(
r2

z − ej
)
, |z| 6 r,

φ(z)− ρr2
∞∑
j=0

(z − ej )−2ψ

(
r2

z − ej
)
, z ∈ D.

Using (6) and applying the principles of analytic function theory, Mityushev [15] has proved
that8(z) ≡ 1. This relation yields the following functional equation

ψ(z) = ρr2
∞∑
j=1

(z− ej )−2ψ

(
r2

z− ej
)
+ 1, |z| 6 r, (9)

with respect to the functionψ(z) analytic in|z| < r and continuous in|z| 6 r.
We now proceed to calculate the component

λxe =
∫ ∫

D

∂u

∂x
dx dy + λ1

∫ ∫
D1

∂u1

∂x
dx dy
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of the effective conductivity tensor3e. Using Green’s formula we have∫ ∫
D

∂u

∂x
dx dy =

∫
∂Q0

udy −
∫
L

udy. (10)

Using (2) we have∫
∂Q0

udy =
∫ 1/2α

−(1/2α)

[
u
(
−α

2
+ iy

)
− u

(α
2
+ iy

)]
dy = 1.

The integral
∫
L
udy is calculated by the mean value theorem of harmonic functions in a disk.

We have∫
L

udy =
∫
L

u1 dy = v ∂u1

∂x
(0),

wherev = πr2 is the area fraction of the inclusions. Hence,λxe takes the form

λxe = 1+ (λ1− 1)v
∂u1

∂x
(0).

Similar arguments applied to

λxye =
∫ ∫

D

∂u

∂y
dx dy + λ1

∫ ∫
D1

∂u1

∂y
dx dy

yield the relation

λxye = (λ1− 1)v
∂u1

∂y
(0). (11)

Two real relations (10) and (11) imply one complex equality

λxe − iλxye = 1+ 2ρvψ(0).

We note that symmetry of the problem impliesλxye = 0. Hence,ψ(0) is real and

λxe = 1+ 2ρvψ(0). (12)

If the conductivity of cylindersλ1 is much greater than the conductivity of the host 1, then
one can assume thatλ1 = +∞, and henceρ = 1. The functional equation (9) then becomes

ψ(z) = r2
∞∑
j=1

(z− ej )−2ψ

(
r2

z− ej
)
+ 1, |z| 6 r. (13)

Convergence of the method of successive approximations for Equation (13) in the case|ρ| = 1
has not been previously investigated. In the present paper this convergence question is also not
addressed. We propose only a simple algorithm to get approximate analytic formulae forψ(z)

andλxe with arbitrary given accuracy.
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3. Elliptic functions according to Eisenstein

In order to calculate the effective transport conductivity tensor Rayleigh [1] introduced a
conditionally convergent sum

S2 =
∞∑
j=1

e−2
j , (14)

defined in the following way

S2 := lim
N→∞

 N∑
m1=−N

lim
M→∞

M∑
m2=−M

(m1α + im2α
−1)−2

 (15)

and calculated by (8). The method of summation in (14) is determined by (15). The sumS2

in (15) was introduced by Eisenstein. A modern survey of the Eisenstein approach is due to
Weil [20]. In the present section Eisenstein functions and their relation to the Rayleigh sums
are discussed.

Eisenstein introduced the following functions

En(z) :=
∑
j

(z + ej )−n. (16)

If n > 3, then the series (16) is absolutely convergent. Ifn = 1 or n = 2 Eisenstein defined
these series as (15) by the following summation method

∑
e

:= lim
N→∞

 N∑
m1=−N

lim
M→∞

M∑
m2=−M

 .
The functionE2(z) can be represented by the absolutely convergent series

E2(z) =
(π
α

)2
[

sin−2(πzα−1)+ 2
∞∑

m=−∞
sin−2(πα−1(z + imα−1))

]
. (17)

The Eisenstein functionE2(z) is related to the Weierstrass functionP (z) by the formula

E2(z)− S2 = P (z),

whereS2 has the form (15). This formula implies the equality

S2 = (E2(z)−P (z))z=0 = (E2(z)− z−2)z=0,

since(P (z)− z−2)z=0 = 0. Using (17) we arrive at formula (8).
The Eisenstein functionE1(z) =∑e(z + ej )−1 is related to the Weierstrass functionζ(z)

by the formula

ζ(z) = E1(z)+ S2z.
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Figure 2. The Rayleigh sumS2(X) calculated with (18).

Using the relations

ζ(z + α)− ζ(z) = 2ζ(α/2), E1(z + α)− E1(z) = 0,

we obtain the fundamental equality

S2 = α−12ζ(α/2).

It follows from elliptic function theory [21] that

S2 = π2

α2

(
1
3 − 8

∞∑
m=1

mh2m

1− h2m

)
, (18)

whereh = exp(−πα−2). So we have proved that the formulae (8), (15) and (18) must give the
same result. The formula (18) is very effective in calculation, becauseh 6 exp(−π) ≈ 0·043
for 0< α 6 1. Mityushev [18] proved the identity

S2(α
2)+ S2(α

−2) = 2π, (19)

S2 is considered as a function onα2. The formula (19) allows us to calculateS2, α > 1. The
functionS2(X) is represented in Figure 2.

Introduce the modified Eisenstein functions

σn(z) := En(z)− z−n, n = 1,2, . . . (20)

with their Taylor expansions

σn(z) = (−1)n
∞∑
l=0

(
l + n− 1

n− 1

)
Sl+nzl. (21)

HereS2 is defined by (15) and calculated by (8) or (18). The sums

Sn :=
∞∑
l=0

e−nj , n = 3,4, . . .
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are absolutely convergent. It is known [21] thatSn = 0 for oddn andSn are real for evenn.
The sumsSn take real values in general only for rectangular arrays of cylinders.

4. Method of Rayleigh

The method of Rayleigh [1] has been discussed in [2–20] and others. Starting from Equation
(13) we can obtain an infinite system of linear algebraic equations following this approach.
We look for a functionψ(z) from (13) in the form of the Taylor expansion

ψ(z) =
∞∑
m=0

αmz
m.

Substituting this expansion in (13) we obtain

∞∑
m=0

αmz
m =

∞∑
m=0

αmr
2(m+1)σm+2(z)+ 1, |z| 6 r, (22)

whereσn(z) are the modified Eisenstein functions (20). Substituting (21) in (22) we obtain the
infiniteR-linear algebraic system

αl =
∞∑
m=0

(−1)m
(
l +m+ 1

m+ 1

)
Sl+m+2r

2(m+1)αm + δl0, l = 0,1,2, . . . (23)

with respect toαl. Hereδl0 is the Kronecker symbol. Calculating the real part of (23), we
arrive at the Rayleigh system.

We do not use the system (23) to calculateψ(z) and the effective conductivity tensor. We
note only that the coefficientsαl (l = 0,1,2, . . .) satisfying (23) are analytic functions onr2.
Therefore, the functionψ(z) = ψ(z, r2) is analytic inr2.

5. Solution to Equation (13)

It follows from the previous section that we can look forψ(z) in the form

ψ(z) = ψ(z, r2) =
∞∑
m=0

ψm(z)r
2m. (24)

Substitute (24) in (13) and select the terms withr2m (m = 0,1,2, . . .). In the results we have
the following scheme of successive approximations to calculateψm(z)

ψ0(z) = 1, ψm(z) =
∑

l+s=m−1

ψlsσs+2(z), m = 1,2, . . . , (25)

whereψl(z) =∑∞s=0ψlsz
s. The finite sum

∑
l+s=m−1 contains the terms inl = m− 1, s = 0;

l = m− 3, s = 2; . . . ; l = 0, s = m− 1. It follows from (21) thatσn(0) = (−1)n Sn = 0 for
oddn, andσn(0) = Sn for evenn. Therefore,ψls = 0 for odds.
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We calculate

ψ1(z) = ψ00σ2(z) = σ2(z) =
∞∑
l=0

(l + 1)Sl+2z
l,

ψ2(z) = ψ10σ2(z) = σ2(0)σ2(z) = S2σ2(z),

ψ3(z) = ψ20σ2(z)+ ψ02σ4(z) = S2
2σ2(z),

ψ4(z) = ψ30σ2(z)+ ψ12σ4(z) = S3
2σ2(z)+ 3S4σ4(z),

ψ5(z) = ψ40σ2(z)+ ψ22σ4(z) = (S4
2 + 3S2

4)σ2(z)+ 3S2S4σ4(z),

ψ6(z) = ψ50σ2(z)+ ψ32σ4(z)+ ψ14σ6(z)

= (S5
2 + 6S2S

2
4)σ2(z)+ 3S2

2S4σ4(z)+ 5S6σ6(z),

ψ7(z) = ψ60σ2(z)+ ψ42σ4(z)+ ψ24σ6(z)

= (S6
2 + 9S2

2S
2
4 + 5S2

6)σ2(z)+ 3S4(S
3
2 + 10S6)σ4(z)+ 5S2S6σ6(z),

ψ8(z) = ψ70σ2(z)+ ψ52σ4(z)+ ψ34σ6(z)+ ψ16σ8(z)

= (S7
2 + 12S3

2S
2
4 + 10S2S

2
6 + 30S2

4S6)σ2(z)

+3S4(S
4
2 + 3S2

4 + 10S2S6)σ4(z)+ 5S2
2S6σ6(z)+ 7S8σ (z).

Using (25) we can calculate the next functionsψ2n(z).
These equalities and (12) imply

λxe = 1+ 2v
∞∑
m=0

ψm(0)π
−mvm = 1+ v(2− S2/π)

1− vS2/π
+ 6S2

4π
−4v5

(1− vS2/π)
2

+10S2S6(2+ 3vS2/π)π
−7v7+ 60S2

4S6(1+ 2vS2/π)π
−7v7

+2(9S4
4 + 7S2

8)π
−8v9+O(v10), as v→ 0. (26)

Let us consider the componentsλxe and λye of the effective conductivity tensor3e as
functions onα2. Then

λye (α
2) = λxe (α−2).

This formula allows us to calculateλye = λye (α2), using (26). If we changeα2 into α−2, then
S2(α

−2) = 2π − S2(α
2) in accordance with (19). The lattice sumsS2n (n > 2) do not change.

Therefore,

λye =
1+ vS2/π

1− v(2− S2/π)
+ 6S2

4π
−4v5

(1− v(2− S2/π))
2

+10S2S6(2+ 3v(2− S2/π))π
−7v7

+60S2
4S6(1+ 2v(2− S2/π))π

−7v7

+2(9S4
4 + 7S2

8)π
−8v9+O(v10), as v→ 0. (27)
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Figure 3. The effective conductivity coefficient of a square array of cylinders: curve 1 calculated with (30); curve
2 calculated with (28) and curve 3 calculated with (29).

The tensor3e has the form

3e =
(
λxe 0

0 λ
y
e

)
,

whereλxe andλye are calculated with (26) and (27).
For a square array of cylinders the effective conductivity is a scalar valueλe = λxe = λye ,

andS2 = π , S4 ≈ 3·1512112,S6 = 0, S8 ≈ 4·2557732. Then (26) and (27) yield

λe = 1+ v
1− v + 6S2

4π
−4 v5

(1− v)2 + 2(9S2
4 + 7S2

8)π
−8v9+O(v10), as v→ 0. (28)

The first term in (28) corresponds to the well-known Clausius–Mossotti approximation

λxe ≈
1+ v
1− v . (29)

We compare formulae (28), (29) with the formula

λe ≈ 1+ 2ρv

/(
1− ρv − 0·305827v4

ρ−2− 1·402958v8
− 0·013362ρ2v8

)
(30)

for ρ = 1 from [6] in Figure 3. It is hard to say which formula is better. We know only the
lower boundλe > (1+ v)/(1− v) for perfectly conducting cylinders. Both formulae (28) and
(30) satisfy this inequality and contain the terms up toO(v9). Anyway, one can calculate the
next termsψm(z) (m > 9) by (25) and improve (28).
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6. Concluding remarks

The Rayleigh sumS2 is calculated by Eisenstein and Weierstrass functions for the rectangular
array of cylinders. So it is justified that all different previous definitions of the Rayleigh sum
of second order give the same result.

The method of functional equations is extended to the case of highly conducting cylin-
ders. This allows us to deduce a simple iterative scheme (25) and an approximate analytical
formulae (26) and (27) for the components of the effective conductivity tensor. We note that
formulae (26) and (27) are valid for arbitrary rectangular arrays, formula (30) from [6] has
been deduced only for a square array.

It is easily seen that the maximum area fraction of the inclusionsvmax depends onα by the
rule

vmax= π

4
min(α2, α−2). (31)

This corresponds to touching cylinders. Formula (28) can also be applied tov = vmax, but for
α separated from 1. In the case whenv is close tovmax andα = 1 we cannot use an expansion
of λxe in a neighborhood of the pointv = 0 [4, 5]. Hence, formula (28) cannot be applied in
this case.

Figure 4.The coefficientλxe = λxe (α2, v), whereα =
0·1, 0·2, . . . ,3, the area fractionv changes alongx-
axes.

Figure 5.The coefficientλxe = λxe (α2, vmax), where
vmax is calculated with (31).

Figure 4 presentsλxe as a function onv with different fixedα. Here the restrictions (31)
are given in account. The curves in Figure 4 end in the points (31) and show the maximum
possible valueλxe for fixedα. Of course the maximumλxe tends to infinity ifα tends to 1. See
McPhedranet al. [4–5]. Figure 5 presents the maximum possibleλxe as a functionα with vmax

calculated by (31).
Formulae (26) and (27) are easy to calculate and can be simply used in applied physics to

evaluate macroscopic properties of thin films and materials containing fibre inclusions. See
McPhedranet al. [2–6].
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